
Name:

Signature:.....Combination......

P525/1 CHEMISTRY Paper 1 2 3/4 hours

Uganda Advanced Certificate of Education S.5 END OF TERM III CHEMISTRY-2024 Paper 1

2 hours 45 minutes

INSTRUCTIONS:

Answer **all** questions in section **A** and **six** questions in section **B** All questions must be answered in the spaces provided

The Periodic Table, with relative atomic masses, is supplied.

Mathematical tables $(3 - figure\ tables)$ are adequate or non-programmable scientific electronic calculators may be used

Illustrate your answers with equations where applicable.

Where necessary, use the following:

Molar gas constant $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273 K

Standard pressure = $101325 N m^{-2}$

	For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A: (46 MARKS)

Answer all questions from this section.

1.	(a)	Complete the	following	equations.
----	-----	--------------	-----------	------------

(i)
$$^{12}_{4}Be \longrightarrow \beta + \dots + \gamma$$
 (½ mark)

(ii)
$${}^{107}_{47}Ag$$
 + ${}^{1}_{0}n$ \longrightarrow + β (½ mark)

(b)	If nobelium	²⁵⁹ ₁₀₂ <i>No</i> has	a half-life o	of 58 minutes.	How long	will it take	for
	nobelium to	decay to 1/4	of its origin	nal weight?	$(2^{1/2} m$	arks)	

• • • • • • • • • • • • • • • • • • • •	 	 •••••	• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •	 	

.....

2. (a) Write an expression for the acid dissociation constant, K_a , of ethanoic acid in water. (01 mark)

(b) Explain the trend in the K_a values in the following series of acids in water. (3 marks)

Acid	CH ₃ COOH	<i>Cl</i> CH ₂ <i>C</i> OOH	Cl₂CHCOOH	<i>Cl₃</i> C <i>C</i> OOH
K _a at 25°C	1.7 × 10 ⁻⁵	1.4×10^{-3}	5.1×10^{-3}	2.2×10^{-1}

.....

•••••	•••••	
•••••	•••••	
	•••••	
3.	Show with (a)	by use of an equation the reaction involving aqueous sodium hydroxide Beryllium oxide
	(b)	Lead(II) oxide
••••••	(c)	Aluminium oxide
•••••	•••••	
4.	produ	lete the following equations and in each case name the main organic ct. $CH_3CH_2I \xrightarrow{Na} (1\frac{1}{2} \text{ marks})$
Name	of pro	duct
	(b)	$CH_3CH=CH_2 + HBr \xrightarrow{ROOR} (1\frac{1}{2} marks)$
Name		duct
	(c)	$CH_3CH_2Br \xrightarrow{CH_3CH_2OH/KOH} $
Name	of pro	duct

C	4			
e or pi	roauct			
(a)	Defi	ne the term hydrat	ion energy.	(02 marks
(b)	State	e two factors which	affect the magnitude of	hydration energy. (01 mark)
(c)	The		enthalpies of hydration of hydratic	
(c)	The	Ion	enthalpies of hydration of Enthalpy of hydration of 1577	
(c)	The		Enthalpy of hydi	
(c)	The (i)	Ion Ca^{2+} Cl^{-} State whether the	Enthalpy of hydi	ration (kJ mol ⁻¹) hydration given in the
(c)		Ion Ca^{2+} Cl^{-} State whether the table above are possible answer.	Enthalpy of hydrology 1577 381 values of enthalpies of l	hydration given in the a reason for your

Using equations show how the following organic compounds can be synthesised.

6.

•••••	(a)	(2½ mark	<i>(SS)</i>		Etnene				
(b)	Hex	-2-yne fro	m	Quick	clime			(3 ma	rks)
7.	pairs	s of ions. In e pair was t	each case reated wi and	e, state th the r HCO	what wou eagent yo OH	ild be ob ou have i	served i named.	f each n	ne following nember (3marks)
•••••	(b)	Sn ²⁺ and	Sn^{4+}						(3marks)
8.	a)	An alkynostructural						ne name	s and (2marks)

	(b)	 X reacts with an ammoniacal solution of silver nitrate. i) State what is observed. 							
••••		ii)	Write the	equation for the reaction th	at takes place.	(1 mark)			
••••	c)	Write	e equations	to show how \mathbf{X} can be synt	hesized from et	thane. (4 marks)			
••••	•••••	•••••			•••••				
• • • •	•••••	•••••							
••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••						
••••	Draw								
		v the st	ructures an	d name the shapes of the fo	llowing species	. (4½ marks)			
	S	species		d name the shapes of the fo		. (4½ marks) ame			
a)	NO ₂ -	species		-					
		species		-					
(a) (b)	NO ₂ -	species		-					

SECTION B: (54 MARKS)

Answer **six** questions from this section. Additional questions answered will **not** be marked.

10.	(a)	(i)	What is a	complex ion?	(1 mark)
		(ii)	Name tw e	factors that affect comp	lex ion formation. (1 mark)
	(b)		e the follow e central me	-	ch case state the oxidation state (4½ marks)
	C	omple	X	Name of complex	Oxidation state
[Zn	(OH) ₄] ²	2-			
[Fe	$(CN)_{6}]^{4}$				
[Cu	ı(NH ₃) ₄	(H ₂ O) ₂	2]2+		
	(c)			of sodium carbonate was e. Explain what was obse	
1	1. Com reacti	on			ase write the mechanism for the
•••••	••••••	•••••			
•••••	•••••	•••••	•••••		
•••••	•••••	•••••	•••••		
		• • • • • • • • •			

	(b)	CH ₃ CHO + NH ₂ OH —				
						 ••••
	(c)	+CH ₃ COCl —				 ••••
12.	(a)	Complete the following the reaction.				for
••••		$CH_3CO_2CH_2CH_{3(l)} + C$	$\bar{D}H_{(aq)}$ —	H ₂ O heat	>	
•••••	•••••		•••••••••••••••••••••••••••••••••••••••	•••••		 •••••

The results obtained for the kinetics of the reaction in (a) above are

shown in the table below.

(b)

Exp't	$[CH_3CO_2CH_2CH_3]$ /mol dm ⁻³	$[\bar{O}H]$ /mol dm ⁻³	Initial rate
			$(\text{mol dm}^{-3}\text{s}^{-1})$
1	7.6×10^{-2}	7.6×10^{-2}	1.13× 10 ⁻³
2	3.8×10^{-2}	1.52×10^{-1}	1.13× 10 ⁻³
3	1.9× 10 ⁻²	1.52× 10 ⁻¹	5.65×10^{-4}

	(i) Deduc	the order of reaction with respect to $CH_3CO_2CH_2CH_3$	(1 mark)
	•	ŌН	(2 mark)
•			
	(ii) Write	the rate equation for the reaction.	(1 mark)
(d)	Calculate the	e rate constant, ${f K}$, for the reaction and state its	s units. (2 marks)

14.	reduc	ed.								
	(a)	Write (i)	the name of one ore used in the extraction of zinc.							
		(ii)	the reducing agent used	(½ mark)						
		(iii)	the equation for the reaction between zinc oxide and agent named in (a)(ii) above.	(1½ mark)						
	(b)	State (i)	how the impure zinc obtained in (a) is purified.	(2½ mark)						
		(ii)	one method by which zinc can be obtained.	(1 mark)						
	(c)		equation for the reaction between zinc and hot concentrated sulphuric acid	(1½ mark)						
•••••	•••••	(ii)	water	(1½ mark)						
• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • •	••••••	•••••						

15.	(a)	What is a catalyst ?	(01 mark)
	(b)	Differentiate between a positive catalyst and a negative	(02 marks)
	(c)	State four general properties of a positive catalyst.	(02 marks)
	(d)	Give one example of a catalyst used in industry and in na processes involved.	ture. Name the (02 marks)
	(e)	State the difference between a homogeneous and hetero ; (02)	g eneous catalyst marks)
16.	(a)	(i) Explain what is meant by the term osmotic pressu	re .(01 mark)

(ii)	State two factors that can affect osmotic pressure of	solutions. (01 mark)
(iii)	Under what conditions are osmotic pressure laws val	lid? (1½ marks)

(b) The osmotic pressure of solutions of different concentrations measured at 298 K for a polymer are given in the table below.

Osmotic pressure/ Pa	Concentration /g dm ⁻³
118	2.0
480	6.0
1000	10.0
1680	14.0

(i) Plot a graph of osmotic pressure against concentration. (03 marks)

	take	State what would be observed and write equation(s) for the reaction(s) that would take place when										
	(a)	Dilute sulphuric acid was added to a solution of potassium	chromate(V1). $(2\frac{1}{2} marks)$									
	(b)	Iron(II) sulphate solution was added to acidified potassium manganate(VII) solution	(2½ marks)									
•••••												
	(c)	Aqueous sodium hydroxide was added drop wise until in e a solution of manganese(II) chloride.	xcess to (4 marks)									
•••••	••••••											

PERIODIC TABLE

1	2											3	4	5	6	7	8
1 H 1.0																1 H 1.0	2 He 4.0
3 Li 6.9	4 Be 9.0											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20.2
11 Na 23.0	12 Mg 24.3											13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zn 65.	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 103	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57 La 139	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 Ti 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)															
			57 La 139	58 Ce 140	59 Fr 141	60 Nd 144	61 Pm (145)	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
			89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf 251	99 Ea (254)	100 Fm (257)	101 Mv (256)	102 No (254)	103 Lw 260

1

- 1. H indicates Atomic number
- 2. H indicates relative Atomic mass 1.0

END